ACHTUNG! Diese Anleitung ist für das PC-Programm ZGEAR gedacht, lässt sich aber auch auf die Getriebeberechnung mit den BayMPonline anwenden. vgl. www.baymp.de

Programm ZGEAR für Windows, LINUX und Mac OS X. Stand 22.8.2010. Prof. Dr.-Ing. Frank Rieg, Lehrstuhl für Konstruktionslehre und CAD, Fakultät für Angewandte Naturwissenschaften, Universität Bayreuth, www.konstruktionslehre.uni-bayreuth.de und www.cad.uni-bayreuth.de.

ZGEAR ist ein kleines, schnelles Hilfsprogramm für die Vorlesungen und Übungen sowie das Hanser-Lehrbuch *Decker: Maschinenelemente* [1] und das Hanser *Taschenbuch der Maschinenelemente* [2]. Es umfasst die **Zahnradberechnung nach DIN 3960 und 3990**. Die Norm 3990 stammt aus 1987 und ist nach wie vor gültig.

Festigkeiten kann ZGEAR nach zwei Verfahren rechnen (die Geometrieberechnung bleibt immer gleich):

- 1. **Direkt nach DIN 3990 T1, T2 und T3** nach Methode C $(K_V, K_{H\beta}, K_{F\beta}, Y_{FS})$, in Teilen auch nach Methode B $(K_{H\alpha}, K_{F\alpha}, Y_R, Y_X, Z_L, Z_R, Z_X)$
- 2. Nach den Formelsätzen des Lehrbuchs Decker (bis 17. Auflage). Auch diese lehnen sich an die Methode C, in Teilen auch Methode B der DIN 3990 an, aber besonders bei K_{Hβ}, K_{Fβ}, K_{Hα}, K_{Fα} sind Vereinfachungen gemacht. Die Rechenergebnisse von ZGEAR weichen stellenweise etwas von den Zahlenbeispielen des Decker ab, was damit zusammenhängt, dass dort z.B. aus Tabellen interpoliert und dort mitunter vereinfacht mit der V-Verzahnung weitergerechnet wird, während ZGEAR mit der W-Verzahnung weiterarbeitet (vgl. Anmerkung 4. unten).

Achtung: Für genaue Rechnungen wird ohnehin auf die diversen professionellen Programme der Softwarehäuser und der FVA verwiesen. Legen Sie keine kritischen Verzahnungen mit ZGEAR aus und arbeiten Sie nicht damit, wenn Sie nicht gründlich mit der Verzahnungstheorie und -praxis vertraut sind!

Das Decker-"Leitbeispiel" (Aufgaben 22.1, 22.3, 22.4, 22.5, 22.9, 23.1, 23.7, 23.8, 23.9) ist bereits als Startkonfiguration geladen, sodass Sie direkt mit **F8 Eingabewerte** die Eingangswerte anzeigen und mit **F9 Berechne** sofort berechnen können. Damit sieht man am besten, was das Programm leistet.

Eingabewerte: Es werden Eingabewerte zu Gruppen zusammengefasst. Dabei werden alle Werte in den üblichen Ingenieur-Einheiten eingegeben, d.h. Leistung in kW, Drehzahlen in 1/min, Durchmesser in mm, Rauheiten in μ m etc.. Sie können auch nur teilweise Werte eingeben: Wenn Sie nur Geometrieergebnisse interessieren, dann brauchen Sie keine Leistungs- und Werkstoffwerte einzugeben. Für Innenverzahnungen gilt wie üblich: Zähnezahl z_2 negativ, Achsabstand negativ, u negativ, d $_2$ negativ etc..

F1 DIN 3990/Decker: Damit wählen Sie an, ob nach DIN 3990 (voreingestellt) oder nach den Formelsätzen des *Decker* gerechnet wird.

F2 Wahl x1+x2/aw: Achsabstand vorgegeben bzw. Profilverschiebung vorgegeben:

Alle Berechnungen funktionieren natürlich auch für Geradverzahnungen sowie Null- und V-Null-Getriebe.

Wann macht man was? Wenn man einen genauen Achsabstand erreichen muss, z.B. bei mehreren koaxialen Zahnradstufen (PKW- und Motorradgetriebe): Achsabstand vorgeben, aber bereits vorher mit Modul, Schrägungswinkel und anzustrebender Profilverschiebungssumme "spielen", denn der Wert für a_w bzw. näherungsweise a_v muss halbwegs realistisch sein, z.B. abschätzen mit Decker Glch. 22.18 u. 22.24: $a_v = \frac{m_n}{2\cos\beta} \cdot (z_1 + z_2) + (x_1 + x_2) m_n$. Andernfalls wird

der Betriebseingriffswinkel α_{wt} undefiniert und der Rest der Berechnung unbrauchbar! Wenn man umgekehrt sehr kleine Ritzelzähnezahlen hat (Unterschnittgefahr!) oder besonders ausgeglichene oder tragfähigkeitsoptimierte Zahnradstufen haben möchte: Profilverschiebungen vorgeben. Näheres siehe *Decker* [1] oder *Niemann* [3].

F3 Geometrie: Zähnezahl Ritzel z₁, Zähnezahl Rad z₂, Normmodul m_n, Zahnbreite b, Schrägungswinkel β

F4 Wert x1+x2/aw: Nach Vorauswahl F2 nun Eingabe der Profilverschiebungswerte bzw. des Achsabstands. \rightarrow Wenn der Achsabstand vorgegeben werden soll: Achsabstand a_w und x_1 eingeben. \rightarrow Wenn die Profilverschiebungen x_1 und x_2 vorgegeben werden sollen: Profilverschiebung Ritzel x_1 und Profilverschiebung Rad x_2 eingeben. Hinter x_1+x_2 wird die Anzahl der Iterationen für α_{wt} in Klammern ausgewiesen. Achtung: Wenn sinnlose Werte für Achsabstand und/oder Profilverschiebungen eingegeben werden, gibt ZGEAR zwangsläufig Unfug aus. Damit ist der Rest der Berechnung unbrauchbar. Achten Sie also auf geometrisch sinnvolle Eingabewerte!

F5 Leistung:

Nenn-Leistung, Drehzahl Ritzel n_1 , Anwendungsfaktor K_A , Verzahnungsqualität (zulässig 5~12). Achtung: ZGEAR prüft, ob die Verzahnungsqualität im zulässigen Bereich liegt und lässt bis zur richtigen Eingabe den Dialog stehen. Sie kommen also erst mit korrekten Werten aus dem Dialog!

F6 Werkstoffe:

Hierzu muss man bemerken, dass in der Norm 3990 die Werkstoffgruppen für die Faktoren Y_X , Y_R und Z_X jeweils unterschiedlich aufgebaut sind. Das ist für ein EDV-Programm unglücklich, aber wohl aus Sicht der Getriebeforschung richtig. Daher müssen diese Kennungen getrennt eingegeben werden – achten Sie auf die jeweiligen Unterschiede in den Werkstoffzusammenstellungen!

Kennziffer für Werkstoffpaarung, Werkstoffkennungen für die Bestimmung von Y_X (Ritzel u. Rad), E-Modul Ritzel E_1 , E-Modul Rad E_2 , Werkstoffkennungen für die Bestimmung von Y_R (Ritzel u. Rad), σ_{Flim1} , σ_{Flim2} , σ_{Hlim2} , Werkstoffkennungen für die Bestimmung von Z_X (Ritzel u. Rad), Ölviskosität bei 40°C. Beachte: $\sigma_{Flim} = 0.5 \ \sigma_{FE}$

Achtung: ZGEAR prüft, ob die Werkstoffkennungen jeweils im zulässigen Bereich liegen und lässt bis zur richtigen Eingabe die Dialoge stehen. Sie kommen also erst mit korrekten Werten aus den Dialogen!

F7 Hilfswerte:

 h_{fP1}/m_n (üblich: 1,25), ρ_{fP2}/m_n (üblich: 0,25), Rautiefe Fuß R_{z1} , Rautiefe Flanke R_{z1} , h_{fP2}/m_n (üblich: 1,25), ρ_{fP2}/m_n (üblich: 0,25), Rautiefe Fuß R_{z2} , Rautiefe Flanke R_{z2} . Im Falle Berechnung direkt nach DIN 3990 zusätzlich: Flankenlinienabweichung f_{sh} , (vgl. Tabelle nächste Seite oder bestimmen Sie f_{sh} mit genauen Verfahren der DIN 3990 T1), Anpassung ja <u>oder</u> nein <u>oder</u> optimales Tragbild, d.h. entweder Radpaare mit Anpassungsmaßnahmen wie Einläppen oder Einlaufen bzw. Radpaare mit sinnvoll gewählter Breitenballigkeit oder aber Zusammenbau der Räder ohne Korrektur oder Einstellung oder aber optimales Tragbild. Diese Werte beeinflussen K_{HB} sehr stark!

F8 Eingabewerte:

Damit können Sie sich alle Eingabewerte anzeigen lassen und prüfen, ob Ihre Eingaben aus den Dialogen auch richtig angekommen sind.

F9 Berechne:

Es werden zunächst die berechneten Geometriewerte vorgehensunabhängig ausgegeben:

- 1) Modul im Stirnschnitt m_t , α_t (= al.t), Teilkreisd. d_1 , d_2 , Grundkreisd. d_{b1} , d_{b2} ,
- \rightarrow Profilverschiebung vorgegeben: Betriebseingriffswinkel α_{wt} (= al.wt), W-Achsabstand α_{w} (= aw)
- \rightarrow Achsabstand vorgegeben: Betriebseingriffswinkel α_{wt} (= al.wt), Profilverschiebungssumme x_1+x_2 , daher dann <u>Abfrage</u> x_1 , um die Profilverschiebungssumme aufzuteilen
- 2) Zähnezahlverhältnis u, V-Kreisd. d_{v1}, d_{v2}, Kopfkreisd. d_{a1}, d_{a2}, Fußkreisd. d_{f1}, d_{f2}, Betriebs-Wälzkreisd. d_{w1}, d_{w2}
- 3) Ersatzzähnezahlen z_{n1} , z_{n2} , Schrägungswinkel am Grundzylinder β_b (= betab), Stirneingriffsteilung p_{et} (= pet), Null-Achsabstand a_d (= ad), V-Achsabstand a_v (= av), Kopfkürzungsfaktor k (wenn negativ: keine Kopfkürzung notwendig), Kopfkreisd. d_{k1} , d_{k2}
- 4) Profilüberdeckung ε_{α} , Sprungüberdeckung ε_{β} , Gesamtüberdeckung ε_{γ}

Sodann werden die berechneten Festigkeitsergebnisse je nach gewähltem Vorgehen ausgegeben:

Direkt nach DIN 3990:

- 1) Umfangsgeschw. am Teilkreis v, Nenn-Umfangskraft am Teilkreis F_{Nt} (= FNt), berechnet am Teilkreis, Spitzenleistung P_b (= Pb), die folgenden fünf Spitzenwerte werden am Betriebs-Wälzkreis berechnet: Tangentialkraft F_t (= Ft), Radialkraft F_r (= Fr), Axialkraft F_a (= Fa), Drehmoment Ritzel T_1 (= T1), Drehmoment Rad T_2 (= T2)
- 2) Linienbelastung w, berechnet mit F_{Nt} , also am Teilkreis, Dynamikfaktor K_V (= KV), dabei wird hinter K_V in Klammern der Fall für K_V ausgegeben (1= Schrägverz. und $\epsilon_{\beta} >= 1$, 2= Geradverz., 3= Schrägverz. und $\epsilon_{\beta} < 1$), Linienbelastung w_t (= wt), ursprünglich wirksame Flankenlinienabweichung $F_{\beta x}$ (= Fbetax), der aus $y_{\beta 1}$ und $y_{\beta 2}$ gemittelte Einlaufbetrag $y_{\beta m}$ (= ybetam), wirksame Flankenlinienabweichung $F_{\beta y}$ (= Fbetay), Breitenfaktor Grübchentragfähigkeit $K_{H\beta}$ (= KHbeta), Exponent NF, Breitenfaktor Zahnfußtragfähigkeit $K_{F\beta}$ (= KFbeta)
- 3) zulässige Eingriffsteilungsabweichung f_{pe} (= fpe), der aus $y_{\alpha 1}$ und $y_{\alpha 2}$ gemittelte Einlaufbetrag $y_{\alpha m}$ (= yalfam), Überdeckungsfaktor Zahnfußtragfähigkeit Y_{ϵ} (= Yeps), Überdeckungsfaktor Grübchentragfähigkeit Z_{ϵ} (= Zeps), Stirnfaktor Grübchentragfähigkeit $K_{H\alpha}$ (= KHalfa), Stirnfaktor Zahnfußtragfähigkeit $K_{F\alpha}$ (= KFalfa), die Kopffaktoren Y_{FS1} und Y_{FS2} werden iterativ bestimmt, der Wert dahinter in Klammern gibt die Anzahl der Iterationsschritte an
- 4) Schrägenfaktor Y_{β} (= Ybeta), Größenfaktoren Y_{X1} (= YX1) u. Y_{X2} (= YX2), relative Oberflächenfaktoren Y_{R1} (= YR1) u. Y_{R2} (= YR2), Zahnfußnennspannungen σ_{F01} (= SigF01) u. σ_{F02} (= SigF02), Zahnfußspannungen σ_{F1} (= SigF1) u. σ_{F2} (= SigF2)
- 5) Sicherheitsfaktoren Zahnfußspannung S_{F1} (= SF1) u. S_{F2} (= SF2), Zonenfaktor Z_H (= ZH), Elastizitätsfaktor Z_E (= ZE), Schrägenfaktor Z_β (= Zbeta), nominelle Flankenpressung σ_{H0} (= SigH0), maßgebende Flankenpressung σ_H (= SigH), Schmierstoff-Faktoren Z_{L1} (= ZL1) u. Z_{L2} (= ZL2)
- 6) Geschwindigkeitsfaktoren Z_{V1} (= ZV1) u. Z_{V2} (= ZV2), Rauheitsfaktoren Z_{R1} (= ZR1) u. Z_{R2} (= ZR2), Größenfaktoren Z_{X1} (= ZX1) u. Z_{X2} (= ZX2), Sicherheitsfaktoren Flankenpressung S_{H1} (= SH1) u. S_{H2} (= SH2)

Nach den Formelsätzen des Decker:

- 1) Umfangsgeschw. am Teilkreis v, Nenn-Umfangskraft am Teilkreis F_{Nt} (= FNt), berechnet am Teilkreis, Spitzenleistung P_b (= Pb), die folgenden fünf Spitzenwerte werden am Betriebs-Wälzkreis berechnet: Tangentialkraft F_t (= Ft), Radialkraft F_r (= Fr), Axialkraft F_a (= Fa), Drehmoment Ritzel T_1 (= T1), Drehmoment Rad T_2 (= T2)
- 2) Linienbelastung w, berechnet mit F_{Nt} , also am Teilkreis, Dynamikfaktor K_V (= KV), dabei wird hinter K_V in Klammern der Fall für K_V ausgegeben (1= Schrägverz. und $\epsilon_{\beta} >= 1$, 2= Geradverz., 3= Schrägverz. und $\epsilon_{\beta} < 1$), Linienbelastung w_t (= wt), Breitengrundfaktor K_{β} (= Kbeta), Korrekturfaktor Linienbelastung f_w (= fw), Werkstoffpaarungsfaktor f_p (= fp), Breitenfaktor Zahnfußtragfähigkeit $K_{F\beta}$ (= KFbeta), Breitenfaktor Grübchentragfähigkeit $K_{H\beta}$ (= KHbeta)
- 3) zulässige Eingriffsteilungsabweichung f_{pe} (= fpe), Einlaufbetrag y_p (= yp), Überdeckungsfaktor Zahnfußtragfähigkeit Y_ϵ (= Yeps), Überdeckungsfaktor Grübchentragfähigkeit Z_ϵ (= Zeps), Stirnfaktor Zahnfußtragfähigkeit $K_{F\alpha}$ (= KFalfa), Stirnfaktor Grübchentragfähigkeit $K_{H\alpha}$ (= KHalfa), die Kopffaktoren Y_{FS1} und Y_{FS2} werden iterativ bestimmt, der Wert dahinter in Klammern gibt die Anzahl der Iterationsschritte an
- 4) Schrägenfaktor Y_{β} (= Ybeta), Größenfaktoren Y_{X1} (= YX1) u. Y_{X2} (= YX2), relative Oberflächenfaktoren Y_{R1} (= YR1) u. Y_{R2} (= YR2), Zahnfußnennspannungen σ_{F01} (= SigF01) u. σ_{F02} (= SigF02), Zahnfußspannungen σ_{F1} (= SigF1) u. σ_{F2} (= SigF2)
- 5) Sicherheitsfaktoren Zahnfußspannung S_{F1} (= SF1) u. S_{F2} (= SF2), Zonenfaktor Z_H (= ZH), Elastizitätsfaktor Z_E (= ZE), Schrägenfaktor Z_β (= Zbeta), nominelle Flankenpressung σ_{H0} (= SigH0), maßgebende Flankenpressung σ_{H0} (= SigH), Schmierstoff-Faktoren Z_{L1} (= ZL1) u. Z_{L2} (= ZL2)
- 6) Geschwindigkeitsfaktoren Z_{V1} (= ZV1) u. Z_{V2} (= ZV2), Rauheitsfaktoren Z_{R1} (= ZR1) u. Z_{R2} (= ZR2), Größenfaktoren Z_{X1} (= ZX1) u. Z_{X2} (= ZX2), Sicherheitsfaktoren Flankenpressung S_{H1} (= SH1) u. S_{H2} (= SH2)

Anmerkungen:

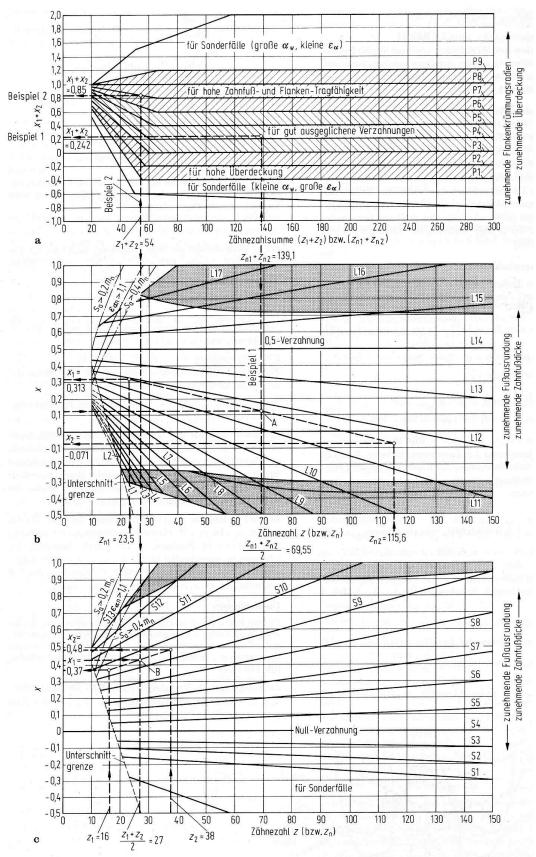
- 1. Es können außen- und innenverzahnte Stirnradstufen berechnet werden, aber keine Zahnstangen und Kegelräder.
- 2. Der Eingriffswinkel ist immer 20°.
- 3. Es wird dauerfest gerechnet, nicht zeit- oder betriebsfest. Daher ist $Y_{NT} = Z_{NT} = 1$. Sie können aber die Flankensicherheiten S_{H1} bzw. S_{H2} und die Fußsicherheiten S_{F1} bzw. S_{F2} mit diesen Faktoren multiplizieren, um zeitfest zu rechnen, vgl. Diagramme unten.
- 4. Es wird immer mit dem W-Achsabstand (Decker Glch. 22.26) gerechnet: Die Gleichung

$$inv \, \alpha_{\text{wt}} = inv \, \alpha_{\text{t}} + 2 \frac{x_1 + x_2}{z_1 + z_2} \tan \alpha_{\text{n}} \, \, (\textit{Decker Glch. 22.26}) \, \, wird \, \, dann \, \, iterativ \, gelöst. \, Ein \, Weiterrechnen \, mit \, dem \, \, dann \, \, iterativ \, gelöst. \, Ein \, Weiterrechnen \, mit \, dem \, dann \, iterativ \, gelöst. \, Ein \, Weiterrechnen \, mit \, dem \, dann \, iterativ \, gelöst. \, Ein \, Weiterrechnen \, mit \, dem \, dann \, iterativ \, gelöst. \, Ein \, Weiterrechnen \, mit \, dem \, dann \, iterativ \, gelöst. \, Ein \, Weiterrechnen \, mit \, dem \, dann \, iterativ \, gelöst. \, Ein \, Weiterrechnen \, mit \, dem \, dann \, iterativ \, gelöst. \, Ein \, Weiterrechnen \, mit \, dem \, dann \, iterativ \, gelöst. \, Ein \, Weiterrechnen \, mit \, dem \, dann \, iterativ \, gelöst. \, Ein \, Weiterrechnen \, mit \, dem \, dann \, iterativ \, gelöst. \, Ein \, Weiterrechnen \, mit \, dem \, dann \, dann$$

V-Achsabstand bei Profilverschiebung ist nicht vorgesehen.

- 5. Verzahnungsqualitäten 6 ~ 12 (für höhere Qualitäten sollte man ohnehin mit einem Spezialprogramm rechnen).
- 6. Werkstoffpaarungen St/St, GGG/GGG, GG/GG, St/GG, St/GGG
- Decker: Der Dynamikfaktor K_V wird (genauer) nach den Glch. 5.25 und 5.26 der DIN 3990 T1 direkt berechnet, während das Vorgehen im Decker an das grafische Verfahren Glch. 5.24 der DIN 3990 T1 anknüpft.
- 8. Decker: Der Faktor K_{β} braucht nicht eingegeben zu werden. Er wird programmintern durch Näherungsgleichungen vom Typ $y = 10^z$, $z = a_0 + a_1 \log(x) + a_2 \log^2(x)$ berechnet, die an sich genau arbeiten, aber von den Tabellen, die bereichsweise und nicht kontinuierlich Werte liefern, durchaus abweichen können.
- 9. *Decker*: Die Faktoren f_w , f_p , c_γ und K brauchen nicht eingegeben zu werden. Sie sind programmintern hinterlegt.
- 10. Die Kopffaktoren Y_{FS} werden sehr genau nach den Formeln der DIN 3990 T3 u. T11 nach Methode C bestimmt; dabei wird der Winkel ϑ iterativ berechnet.
- 11. *Decker:* Die Größenfaktoren Y_X und Z_X werden (genauer) nach den Formelsätzen der DIN 3990 T3 nach Methode B bestimmt, nicht nach Tabelle *Decker* 23.16.
- 12. Die relativen Oberflächenfaktoren Y_R werden nach den Formelsätzen der DIN 3990 T3 bestimmt. Dies entspricht der Methode B und den Formeln, die in der Legende zur Glch. (23.43) des *Decker* genannt werden.
- 13. Die relative Stützziffer Y_{δ} ist programmintern auf 1 gesetzt, normale Fußausrundung unterstellt.
- 14. Z_W ist programmintern auf 1 gesetzt; damit liegt man auf der sicheren Seite.
- 15. *Decker*: Die Faktoren Z_L, Z_V und Z_R werden (genauer) nach den Formelsätzen der DIN 3990 T3 nach Methode B bestimmt, nicht nach Tabelle *Decker* 23.19.

Literatur:

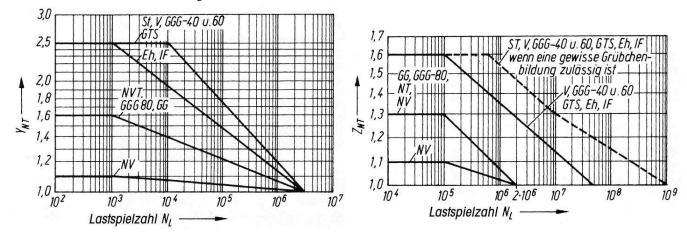

- [1] Decker: Maschinenelemente. 17. Auflage. München, Wien: Carl Hanser 2009.
- [2] Rieg, F.; Kaczmarek, M. (Hrsg): Taschenbuch der Maschinenelemente. München, Wien: Hanser 2006.
- [3] Niemann, G.; Winter, H.: Maschinenelemente, Bd.II. 2. Auflage. Berlin, Heidelberg, New York: Springer 1989.
- DIN 3990 Teil 1: Tragfähigkeitsberechnung von Stirnrädern, Einführung und allgemeine Einflußfaktoren, Dez.1987
- DIN 3990 Teil 2: Tragfähigkeitsberechnung von Stirnrädern, Berechnung der Grübchentragfähigkeit, Dez. 1987
- DIN 3990 Teil 3: Tragfähigkeitsberechnung von Stirnrädern, Berechnung der Zahnfußtragfähigkeit, Dez.1987
- DIN 3990 Teil 11: Tragfähigkeitsberechnung von Stirnrädern, Anwendungsnorm für Industrieg., Detail-Methode, Feb.1989

Normmoduln gemäß DIN 780 nach Tabellenbuch Decker

ne 1	0,05	0,06	0,08	0,10	0,12	0,16	0,20	0,25	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,25
Reihe	1,5	2	2,5	3	4	5	6	8	10	12	16	20	25	32	40	50	60
le 2	0,055	0,07	0,09	0,11	0,14	0,18	0,22	0,28	0,35	0,45	0,55	0,65	0,75	0,85	0,95	1.125	1,375
Reihe	1,75	2,25	2,75	3,5	4,5	5,5	7	9	11	14	18	22	28	36	45	55	70

Anwendungsfaktor K_{A} gemäß DIN 3990 nach Tabellenbuch Decker

Arbeitsmaschine (getriebene Maschine) Arbeitsweise und Beispiele	gleichmäßig: Elektro- motor	Arbeitsweise	Antriebsmaschir und Beispiele mäßige Stöße: Mehrzylinder- Motor	starke Stöße:
gleichmäßig (uniform): Stromerzeuger, Vorschubgetriebe, leichte Aufzüge und Hubwinden, Turbogebläse und -verdichter, Rührer und Mischer für Stoffe gleichmäßiger Dichte, Gurt- und Schneckenförderer	1,00	1,10	1,25	1,50
mäßige Stöße (moderat): Hauptantriebe von Werkzeugmaschinen, schwere Aufzüge, Krandrehwerke, Grubenlüfter, Rührer und Mischer für Stoffe ungleichmäßiger Dichte, Mehrzylinder-Kolbenpumpen, Zuteilpumpen	1,25	1,35	1,50	1,75
mittlere Stöße: Holzbearbeitungsmaschinen, Hubwerke, Einzylinder-Kolben- pumpen, Mischmaschinen mit unterbrochenem Betrieb, Mahlwerke	1,50	1,60	1,75	2,00
starke Stöße (heavy): Stanzen, Scheren, Walzwerks- und Hüttenmaschinen, Löffelbagger, schwere Zentrifugen, schwere Zuteilpumpen, Pressen	1,75	1,85	2,00	2,25 oder höher


Wahl der Profilverschiebung gemäß DIN 3992 aus Dubbel, 21. Auflage. $\underline{Diagramm\ a}$: Wahl der Profilverschiebungssumme x_1+x_2 , $\underline{Diagramm\ b}$: Empfehlung für die Aufteilung von x_1+x_2 bei Übersetzung ins Langsame, $\underline{Diagramm\ c}$: Aufteilung von x_1+x_2 bei Übersetzung ins Schnelle. Graue Bereiche: Gefahr von Eingriffsstörungen. Wenn $z_2 > 150$, dann setze $z_2 = 150$. Beispiel 1: Radpaar mit Schrägverzahnung. Diagramm a: Wahl von x_1+x_2 : wähle z.B. Summenlinie P4~P5, liefert $x_1+x_2 = 0,24$. Übersetzung ins Langsame, also Diagramm b: Ins Diagramm mit $x_1+x_2/2=0,12$ von Y-Achse nach rechts und mit $z_{n1}+z_{n2}/2=69,5$ von X-Achse nach oben ergibt Schnittpunkt A. Paarungslinie durch A liefert für $z_{n1}=23,5$ dann $x_1=0,31$ (und für $z_{n2}=115,6$ dann $x_2=-0,07$, aber das ergäbe sich auch aus der Profilverschiebungssumme).

Beispiel 2: Radpaar mit Geradverzahnung für hohe Tragfähigkeit, z_1 = 16, z_2 = 38. Diagramm a: Wahl von x_1+x_2 : wähle z.B. Summenlinie P7, liefert x_1+x_2 = 0,85. Übersetzung ins Schnelle, also Diagramm c: Ins Diagramm mit $x_1+x_2/2=0,425$ von Y-Achse nach rechts und mit $z_1+z_2/2=27$ von X-Achse nach oben ergibt Schnittpunkt B. Paarungslinie durch B liefert für z_1 = 16 dann x_1 = 0,37 (und für z_2 = 38 dann x_2 = 0,48, aber das ergäbe sich auch aus der Profilverschiebungssumme).

Flankenlinienabweichung durch Verformung: f_{sh} in µm

Transcending were ready warrent verrormang. Isli m	MIII						
Zahnbreite in mm	≤ 20	> 20	> 40	> 100	> 260	> 315	> 560
		≤ 40	≤ 100	≤ 260	≤ 315	≤ 560	
sehr steife Getriebe und/oder F _t /b < 200 N/mm ² ,	5	6,5	7	8	10	12	16
z.B. Turbogetriebe							
mittlere Steifigkeit und/oder $F_t/b = 200 \sim 1000$	6	7	8	11	14	18	24
N/mm ² , typische Industriegetriebe							
nachgiebige Getriebe und/oder F _t /b > 1000	10	13	18	25	30	38	50
N/mm^2							

Lebensdauerfaktoren Y_{NT} und Z_{NT} gemäß DIN 3990 aus Tabellenband Decker

Werkstoff	Kurzzeichen	Behandlung	Flanken- härte	$\sigma_{ m FE}$ N/mm ²	σ _{H lim} N/mm ²	
Gusseisen m. Lamellengr. DIN EN 1561 (DIN 1691)	EN-GJL-200 (GG-20) EN-GJL-250 (GG-25)	_	180 HB 220 HB	80 110	300 360	
Temperguss DIN EN 1562 (DIN 1692)	EN-GJMB-350 (GTS-35) EN-GJMB-650 (GTS-65)	=	150 HB 220 HB	330 410	320 460	
Gusseisen m. Kugelgraphit DIN EN 1563 (DIN 1693)	EN-GJS-400 (GGG-40) EN-GJS-600 (GGG-60) EN-GJS-800 (GGG-80)	= =	180 HB 250 HB 320 HB	370 450 500	370 490 600	
Stahlguss DIN 1681	GS-52 GS-60	= =	160 HB 180 HB	280 320	320 380	
Baustahl DIN EN 10025 (DIN 17100)	E295 (St 50) E335 (St 60) E360 (St 70)	_	160 HB 190 HB 210 HB	320 350 410	370 430 460	
Vergütungsstahl	C 45	normalisiert	190 HV 10	410	530	
DIN EN 10083 (DIN 17200)	34CrMo4 42CrMo4 34CrNiMo6	vergütet	270 HV 10 300 HV 10 310 HV 10	520 570 610	530 600 630	
Einsatzstahl DIN EN 10084 (DIN 17210)	16MnCr5 15CrNi6 17CrNiMo6	einsatzgehärtet	720 HV 10 730 HV 10 740 HV 10	860 920 1000	1470 1490 1510	
Vergütungs- und Einsatzstahl	42CrMo4 16MnCr5 31CrMoV9	gasnitriert	550 HV 10 550 HV 10 700 HV 10	770 810 840	1070 1100 1230	
Vergütungs- und Einsatzstahl	C 45 16MnCr5 42CrMo4	nitro- carburiert	420 HV 10 560 HV 10 610 HV 10	620 650 680	710 770 830	
	34Cr4	carbonitriert	650 HV 10	900	1350	

Auswahl Zahnradwerkstoffe aus Tabellenband *Decker*. **Beachte:** In der DIN 3990 T5 wird σ_{Flim} verwandt. Umrechnung: $\sigma_{Flim} = 0.5 \sigma_{FE}$

Beispiel aus [3], S.305 ff: Turbogetriebe, z_1 = 31, z_2 = 146, m_1 = 4, β = 10.5, b= 180, x_1 = 0.2549, x_2 = -0.2523, P_{Nb} = 5500, n_1 =17657, K_A = 1.25, Qualität 5, h_{fp1}/m_n = 1.4, ρ_{fp1}/m_n = 0.4, h_{fp2}/m_n = 0.4, P_{fp2}/m_n = 1500, P_{fp2}/m_n = 1500,